1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
| import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor from typing import Any
import torch.nn.functional as F
device = ( "cuda" if torch.cuda.is_available() else "cpu" ) print(f"Using {device} device")
training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor()) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor())
batch_size = 64 train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=batch_size) for X, y in test_dataloader: print(f"Shape of X [N, C, H, W]: {X.shape}") print(f"Shape of y: {y.shape} {y.dtype}") break
class NeuralNetwork(nn.Module): """ 当创建一个自定义的神经网络模型并继承自nn.Module类时 需要实现__init__()方法和forward()方法。 __init__()方法用于初始化模型的各个层, forward()方法定义了数据在模型中前向传播的过程。 """ def __init__(self) -> None: super().__init__() self.Flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) )
def forward(self,x): """模型推理过程""" x = self.Flatten(x) logits = self.linear_relu_stack(x) return logits
class MyAlexNet(nn.Module): def __init__(self): super(MyAlexNet, self).__init__() self.ReLU = nn.ReLU() self.c1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2) self.s1 = nn.MaxPool2d(kernel_size=3, stride=2) self.c2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=2) self.c3 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1) self.s3 = nn.MaxPool2d(kernel_size=3, stride=2) self.flatten = nn.Flatten() self.f6 = nn.Linear(7*7*64, 10) def forward(self, x): x = self.ReLU(self.c1(x)) x = self.s1(x) x = self.ReLU(self.c2(x)) x = self.ReLU(self.c3(x)) x = self.s3(x) x = self.flatten(x)
x = self.f6(x) return x def train(dataloader:DataLoader, model:nn.Module, loss_fn:Any, optimizer:torch.optim.Optimizer): size = len(dataloader.dataset) model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) pred = model(X) loss = loss_fn(pred, y) loss.backward() optimizer.step() optimizer.zero_grad() if batch % 100 == 0: loss, current = loss.item(), (batch + 1) * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test( dataloader:DataLoader, model:nn.Module, loss_fn:nn.CrossEntropyLoss, ): size = len(dataloader.dataset) num_batches = len(dataloader) test_loss, correct = 0,0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred:torch.Tensor = model(X) test_loss += loss_fn(pred,y).item() correct += (pred.argmax(1)==y).type(torch.float).sum().item() test_loss /= num_batches correct /= size print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
if __name__ == "__main__": model = MyAlexNet().to(device) model.load_state_dict(torch.load("model.pth")) print(model) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) epochs = 5 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(train_dataloader, model, loss_fn, optimizer) test(test_dataloader, model, loss_fn) torch.save(model.state_dict(), "model.pth") print("Done!")
|